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Optically active oxazolines have been extensively used as

ligands for transition metals in asymmetric catalysts.1 However,
most of them are bidentate ligands such as1-4. We report here
a new catalytic asymmetric reaction using monodentate chiral
oxazoline ligands5.

Tandem (also described as domino or cascade) reactions, which
permit complex molecules to be reasonably well-constructed in
a one-pot assembly, are an important topic in organic synthesis.2

We recently found that a nickel complex catalyzed the reaction
of enones, alkynes, organometallics, and Me3SiCl to provide the
tandem coupling products with high regio- and stereoselectivities.3

We next planned an enantioselective reaction and started to
examine the effects of various chiral ligands.

Enone6a was treated with alkyne7a, Me2Zn, and Me3SiCl in
the presence of Ni(acac)2 (5 mol %) and a chiral ligand (10 mol
%) in THF at room temperature (eq 1).4 After hydrolysis of the

obtained8a, the enantiomeric excess (ee) of the corresponding
9awas determined by chiral HPLC. Whereas phosphorus ligands

(BINAP,5a 4% ee (43% yield); MeO-MOP,5b 0% ee (47% yield))
and bidentate oxazolines (1,6 <2% ee (32% yield);2,7 <2% ee
(60% yield);3,7 4% ee (20% yield);4,8 0% ee (43% yield)) were
not effective, the use of monodentate oxazolines59 induced
enantioselection to give optically active9a, i.e.,5a, 33% ee (42%
yield); 5b, 34% ee (42% yield);5c, 20% ee (55% yield);5d,
50% ee (31% yield);5e, 43% ee (43% yield);5f, 65% ee (47%
yield)). When a THF solution of6a and Me3SiCl was added
dropwise over 2 h to thereaction mixture including (S)-5f, both
the ee and the chemical yield of9a further increased to 70 and
62%, respectively. To this end, DME was more efficient than
THF (78% ee (57% yield)). Similar results were obtained when
diglyme (74% ee (63% yield)) and triglyme (76% ee (61% yield))
were used as the solvent.
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a All substrates were added in succession to the catalytic system, and
the mixture stirred for 2 h at room temperature.b Total yield of
regioisomeric mixture.
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The results of the enantioselective tandem coupling with cyclic
enones are shown in Scheme 1. Treatment with6b in DME or
diglyme gave9b of modest enantiomeric purity. Interestingly,
the enantioselectivity was improved to 81% ee by the use of
triglyme. The ee of9c10 derived from the reaction with6c was
lower than that of9a and9b.

The enantioselective tandem coupling was performed also with
terminal alkynes (Scheme 2). The reaction of6awith 7b in DME
gave9d11 of 50% ee with perfect regioselection. The enantiomeric
purity was increased to 66%, when all of the reactants were
successively added to the catalytic system. Almost the same
enantioselectivity (9e, 67% ee) was shown in the reaction with
7c.

The present catalytic system is applied to the asymmetric
reaction with crotonaldehyde (6d). An alcohol 12, which was
converted from the corresponding tandem coupling9f by treat-
ment with NaBH4, was obtained in 49% ee (Scheme 3).

In summary, we have accomplished a new asymmetric catalytic
multiple-component tandem coupling.12 It is worth noting that
the catalysts involving simple monodentate chiral oxazolines5,
which have been previously used as valuable chiral auxiliaries,1

make the enantiofacial differentiation of6 effectively occur to
give optically active8 (or 9).
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